5. Operators and Assignments
Determine the result of applying any operator, including assignment operators, instanceof, and casts to operands of any type, class, scope, or accessibility, or any combination of these.
Evaluation Order
All operands are evaluated left to right, even if the order of execution of the operations is something different. This is most noticeable in the case of assignments. For assignments, associativity is right to left.
Unary Operators
Increment/Decrement operators : Both x++ and ++x cause the same result in x. However, the apparent value of the expression itself is different.
Arithmetic operators
Division and Multiplication
If you multiply first and then divide there is a risk of overflow. Dividing first and then multiplying almost definitely loses precision. It is better to multiply first, because it at least might work perfectly if the representation is long enough.
Modulo (%)
If you use negative operands the result’s sign is entirely determined by the sign of the left hand operand. Simply drop any negative sign from either operand and calculate the result. Then if the original left hand operand was negative, negate the result. The sign of the right operand is irrelevant.
When the modulo operator is applied to floating point types the result might well have a fractional part.
This operator can throw Arithmetic Exception if applied to integral types and the second operand is zero.
NaN
Float.NaN and Double.NaN are considered to be non-ordinal for comparisons i.e. for any value of x, including NaN itself any comparison with NaN will return false.
In fact, Float.NaN != Float.NaN will return true.
The most appropriate way to test for a NaN result from a calculation is to use static methods like Float.isNaN(float) or Double.isNaN(double).
The shift operators
These can be applied to arguments of integral types only. In fact, they should generally be applied to only operands of either int or long types.
The left shift <<
This moves all of the bits in the specified value to the left by the number of bit positions specified by num. For each shift left, the high order bit is lost and a zero is brought in on the right. This means that when a left shift is applied to an int operand, bits are lost once they are shifted past bit position 31. If the operand is ‘long’ then bits are lost after bit position 63.
Java’s automatic type promotions produce unexpected results when you are shifting byte or short values. These values are promoted to int when an expression is evaluated and the result is also int. This means that the outcome of a left shift on a byte or short value will be an int, and the bits are not lost until they are past position 31. Furthermore, a negative byte or short will be sign-extended when it is promoted to int. Thus, the high order bits will be filled with 1s. For these reasons, to perform a left shift on a byte or short implies that you must discard the high order bytes of the int result. The easiest way to do this is to simply cast the result back to a byte or short.
Each left shift has the effect of doubling the original value. But, if you shift a 1 bit into a high order position (31 or 63) the value will become negative.
The right shift >>
Each time you shift a value to the right, it divides that value by two and discards the remainder. You can take advantage of this for high performance integer division by 2. Of course, you must be aware that you are not shifting any bits off the right end.
When you are shifting right, the top bits exposed by the right shift are filled in with the previous contents of the top bit. This is called sign-extension and serves to preserve the sign of negative numbers.
There is a feature of the arithmetic right shift that differs from simple division by two. If you divide –1 by 2, the result will be zero. However, it is interesting to note that if you shift –1 right, the result is always –1. the result of right shift operator applied to –1 is –1.
There is a feature of the arithmetic right shift that differs from simple division by two. If you divide –1 by 2, the result will be zero. However, the result of right shift operator applied to –1 is –1.
Arithmetic promotion of operands
Arithmetic promotion of operands takes place before any binary operator is applied so that all numeric operands are at least int type. This has an important consequence for the unsigned right shift operator when applied to values that are narrower than int. Take a byte for example. First it is promoted to int, which is done treating the byte as a signed quantity. Next, the shift occurs, and zero bits are propagated into the top bits of the result – but these bits are not part of the original byte. When the result is cast down to a byte again, the high order bits of that byte appear to have been created by a signed shift (>>), rather than an unsigned one.
This is why logical right shift operator generally should not be used with operands smaller than an int. It is unlikely to produce a result one expects.
The unsigned right shift (>>>) :
The >> operator automatically fills up the high order bit with it previous contents each time a shift occurs. This preserves the sign of the value. However, sometimes it is undesirable. For example, if you are shifting something that does not represent a numeric value, you may not want sign extension to take place. This situation is common when you are working with pixel based values and graphics. In such cases, you want to substitute the high order bit with zero, no matter what the initial value was. In such cases use unsigned shift.
The >>> operator is only meaningful for 32 and 64 bit values. Remember, smaller values are automatically promoted to int in expressions. This means that sign extension occurs and that shift will take place in a 32 bit rather than 8 or 16 bit value. That is one might expect an unsigned right shift on a byte value to zero fill beginning at bit 7. But this is not the case since it is a 32 bit value that is actually shifted.
The comparison/Relational operators
These operators return a boolean result. There are three types of comparison. Ordinal comparisons test the relative value of numeric operands. Object type comparisons determine if the runtime type of an object is of a particular type or a subclass of that particular type. Equality comparisons test if two values are the same and may be applied to values of non-numeric type.
Ordinal comparisons with <,<=,>,>=
These are applicable to all numeric types and to char and produce a boolean result. Arithmetic promotions are applied when these operators are used. Although it would be an error to assign, say, a float value to a char, it is perfectly in order to compare the two. In this case char is promoted to float and then compared.
instanceof operator
This is used to test the class of an object at runtime. The left hand operand can be any object reference expression, usually a variable or an array element, while the right hand operand must be a class, interface or array type. Java.lang.Class object or its string name cannot be used as right hand operand.
This operator can also be used to test whether a reference refers to an array. Since arrays are themselves objects in Java, this is natural enough, but the test actually checks two things : First it will check if the object is an array and then it will check if the element type of that array is some subclass of the element type of the right hand operand.
If the left hand operand is a null value, this operator simply returns false. It does not cause an exception.
Equality comparison operators (== and !=)
For variables of object type, these operators compare the references themselves rather than the contents of the objects. To achieve a content or semantic comparison, one should use equals() method. To function properly, the equals() method must have been defined for the class of the objects being compared. If it is not, then equals() too behaves like == operator.
For x.equals(y) the test y instanceof x must be true. If this is not the case, then equals() must return false.
If you define equals() in your own classes, you should be careful to observe two rules: 1. First the argument to the equals() method is an object. You must avoid the temptation to make the argument specific to your own class you are defining. If you do this, you have overloaded this method, not overridden it. This means that functionality in the other parts of the Java API that depends on the equals() method will fail. Most significantly, perhaps, lookup methods in containers, such as containsKey() and get() in the HashMap, will fail. 2. The second rule you must observe is that if you define an equals() method, you should also define a hashCode() method. This method should return the same value for objects that compare equal using the equals() method. Again, this behavior is needed to support the containers, and other classes.
The bitwise operators : &, ^, and |
These operators manipulate the bits within an integer. All the integer types are represented by binary numbers of varying bit widths. Java uses an encoding known as two’s complement, which means that negative numbers are represented by inverting all of the bits in a value, then adding 1 to the result. For example,
42 = 00101010
-42 = (11010101) +1 = 11010110
This addition of 1 is applied even when changing negative to positive.
The reason Java (and most other languages) uses two’s complement is easy to see when you consider the issue of zero crossing. Assuming a byte value, zero is 0000 0000. in one’s complement, simply inverting all the bits gives 1111 1111 which creates negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved by using two’s complement to represent negative values. When using two’s complement, 1 is added to the complement, producing 1 0000 0000. This produces a 1 bit too far to the left to fit back into the byte value, resulting in the desired behavior, where negative zero is same as 0, and 1111 1111 is the encoding for –1.
Because Java uses two’s complement to store negative numbers - and because all integers are signed values in Java – applying bitwise operators can easily produce unexpected results. For example, turning on the high order bit will cause the resulting value to be interpreted as a negative number, whether this is what you intended or not. To avoid unpleasant surprises, just remember that the high order bit determines the sign of an integer no matter how that high order bit gets set.
Collections of bits are sometimes used to save storage space where several boolean values are needed or to represent the states of a collection of binary inputs from physical devices.
These operators are applicable to integral types. Collections of bits are sometimes used to save storage space where several boolean values are needed or to represent the states of a collection of binary inputs from physical devices.
The bitwise operators calculate each bit of their results by comparing the corresponding bits of the two operands on the basis of these three rules :
· For AND operators, 1&1 produces 1. Else zero.

· For XOR, 1^0 produces 1 as does 0^1. Else zero.

· For |, 0|0 produces 0. Else 1.

It is also permitted to apply these operators to boolean operands.
The short circuit logical operators : && and ||
These are applicable to only on boolean types, and not integral types. Although these shortcuts do not affect the result of the operation, side effects might well be changed. If the evaluation of the right hand operand involves a side effect, then omitting the evaluation will change the overall meaning of the expression. This behavior distinguishes these operators from the bitwise operators applied to boolean types.
The ternary operator ?:
This operator provides a way to code simple if-else conditions into a single expression. The (boolean) expression left of the ? is evaluated. If true, the result of the whole expression is the value of the sub-expression to the left of the colon, otherwise it is the value of the sub-expression to the right of the colon. The sub-expressions on either side of the colon must be of the same type.

Determine the result of applying any operator, including assignment operators, instanceof, and casts to operands of any type, class, scope, or accessibility, or any combination of these.
Converting and Casting

Automatic, non-explicit (done by compiler or Java) type changing is known as conversion. On the other hand explicitly changing the type of a value is called casting. Both are governed by certain rules.

Primitives and conversion

All conversion of primitive data type takes place at compile time. This is because all the information, needed to determine whether or not conversion is legal, is available at compile time.

Assignment

Assignment conversion happens when you assign a value to a variable of a different type from the original value. The general rules are:

· A boolean may not be converted to any other type.

· A non boolean may be converted to another non boolean type, provided the conversion is a widening conversion.

· A non boolean may not be converted to another non boolean type, if the conversion is narrowing.

You cannot convert a byte to a char or a char to a short, even though it seems reasonable to do so.

Method call:

Another kind of conversion is method-call-conversion. This happens when you pass a value of one type as an argument to a method that expects a different type. Here too, widening conversions are permitted, not narrowing.

Arithmetic promotion:

These too, are widening conversions.

Unary operators:

· If the operand is a byte, a short or a char, it is converted to an int.

· If the operand is of any other type, it is not converted.

Binary operators:

· If one of the operands is double, the other operand is converted to a double.

· Else if one of the operand is a float, the other operand is converted to a float.

· Else if one of the operand is long, the other operand is converted to a long.

· Else both operands are converted to int.

Primitives and casting

Casting means explicitly telling Java to make a conversion. A casting may widen or narrow its argument. But casting is required when you want to perform a narrowing conversion.
Narrowing runs the risk of losing information; the cast tells the compiler that you accept the risk. During casting the lower order bits are preserved and higher order bits are discarded depending on the operands. The rules are:

· Any non boolean can be cast to any non boolean.

· A boolean cannot be cast to a non boolean and vice versa.

Note that while casting is ordinarily used when narrowing, it is perfectly legal to cast when widening. The cast is unnecessary, but provides clarity.

*** if you cast a negative number to a char, ? is printed in S.o.p(); also any number less than 0 and greater than 255 gives the same output.

Object reference conversion

Reference conversion, like primitive conversion, takes place at compile time, because the compiler has all the information it needs to determine whether the conversion is legal.

Object reference assignment conversion:

There are generally three kinds of object reference type:
· A class type

· An interface type

· An array type

Assignment conversion looks like this:

OldType x = new OldType();
NewType y = x; // reference assignment conversion.

In general, object reference conversion is permitted when the direction of the conversion is ‘up’ the inheritance hierarchy; that is old type should inherit from the new type. The rules are:
· An interface type may only be converted to an interface type or to Object. If the new type is an interface, it must be a super interface of the old type.

· A class type may be converted to a class type or to an interface type. If converting to a class type, the new type must be a superclass of the old type. If converting to an interface type, the old type must implement the interface.

· An array may be converted to the class Object, to the interface Cloneable, or to an array. Only an array of object reference types may be converted to an array, and the old element type must be convertible to the new element type.

	
	OldType is a class
	OldType is an interface
	OldType is an array

	NewType is a class
	OldType must be a subclass of NewType.
	NewType must be Object
	NewType must be Object

	NewType is an interface
	OldType must implement interface NewType
	OldType must be a sub-interface of NewType
	NewType must be Cloneable/Serializable

	NewType is an array
	Compiler Error
	Compiler Error
	OldType must be an array of some object reference type that can be converted to whatever NewType is an array of.

Object method call conversion: Rules are same as above.

To see how the rules make sense in the context of method calls, consider the extremely useful Vector class. You can store anything you like in a Vector (anything non-primitive) by calling the method

 addObject (Object ob);

whatever you pass to the above method, will be converted to Object. The automatic conversion means that the people who wrote the Vector class did not have to write a separate method for every possible type of object that anyone might conceivably want to store in a Vector.

Object reference casting:

Object reference casting is like primitive-casting: by using a cast, you convince the compiler to let you do a conversion that otherwise might not be allowed.

Any kind of conversion that is allowed for assignments or method calls is allowed for explicit casting, though it is not needed (done by compiler implicitly). The power of casting appears when you explicitly cast to a type that is not allowed by the rules of implicit conversion.

It is important to understand the difference between objects and object reference variables. Every object (almost) is constructed via the ‘new’ operator. The argument to the ‘new’ determines for all time the true class of the object. Java programs do not deal directly with the objects but with references to objects. The objects themselves live in memory somewhere in JVM. The reference variable contains something similar to the address of the object. This address is known as reference to the object. References are stored in variables, and variables have types that are specified by the programmer at compile time.

While an object’s class is unchanging, it may be referenced by variable of many different types.

The type of a reference variable is obvious at compile time. However, the class of an object referenced by such a variable cannot be known until runtime. This lack of knowledge is not a shortcoming of Java: it results from a fundamental principle of computer science.

The rules for casting are a bit broader than those for conversion. Some of these rules concern reference type and can be enforced by the compiler at compile time. Other rules concern object class and can only be enforced during runtime. The table below demonstrates compile time rules.

	
	OldType is a non-final class
	OldType is a final class
	OldType is an interface
	OldType is an array

	NewType is a non-final class
	OldType must extend NewType or vice versa
	OldType must extend NewType
	Always OK
	NewType must be Object

	NewType is a final class
	NewType must extend OldType
	OldType and NewType must be the same class
	NewType must implement interface OldType
	Compiler Error

	NewType is an interface
	Always OK
	OldType must implement interface NewType
	Almost always OK
	OldType must be Object

	NewType is an array
	OldType must be Object
	Compiler error
	Compiler Error
	OldType must be an array of some type that can be cast to whatever NewType is an array of.

Assuming that a desired cast survives compilation, a second check must occur at runtime. The second check determines whether the class of the object being cast is compatible with the new type.

Compile time rules:

1. When both OldType and NewType are classes, one must be a subclass of the other.

2. When both are arrays, both arrays must contain reference types, and it must be legal to cast an element of OldType to an element of NewType.

3. You can always cast between an interface and a non-final object.

Runtime rules:

Remember that the conversion to NewType must actually be possible.
1. If NewType is a class, the class of the expression being converted must be NewType or must inherit from NewType.

2. If NewType is an interface, the class of the expression being converted must implement NewType.

 Determine the result of applying the boolean equals (Object) method to objects of any combination of the classes java.lang.String, java.lang.Boolean, and java.lang.Object.
The equals method defined in class Object returns true if and only if x and y refer to the same object in the following expression:
 x.equals (y);
In case of equals method defined in Boolean class it returns true only and only if the argument is not null and is a Boolean object that represents the same value as this object.
In case of String class, this method returns true if and only if the argument is not null and is a String object that represents the same sequence of characters as this object.
For any non-null reference value x, x.equals(null) will always return false.
In an expression involving the operators &, |, &&, ||, and variables of known values state which operands are evaluated and the value of the expression.

Let us take an expression :

 (expression1 op expression2);

where op is any one of the above operators and the two operands are boolean expressions.

The operators && and || are known as short cut logical operators. In the above expression, if op is one of these operators then there may be instances when only the first expression will be evaluated and not the second expression. If the evaluation of the first expression itself determines the result of the overall expression, then the second or right hand expression will not be evaluated.

For example, if the operator is && and if the first expression evaluates to false, then it is clear that whatever the result of evaluating the right hand expression, the overall expression will evaluate to false only. In such cases, there is no need to evaluate the second expression. But, if the first expression evaluates to true, then the overall result of the complete expression will depend on the second expression. In such cases, the second expression will be evaluated.

Operators & and | always evaluate both the operands.
Determine the effect upon objects and primitive values of passing variables into methods and performing assignments or other modifying operations in that method.

Argument passing:
Call by value:
This method copies the value of an argument into the formal parameter of the sub-routine. Therefore, changes made to the parameter of the sub-routine have no effect on the argument used to call it. In Java when a simple type is passed, it is passed by value.
Call by reference:
In this method, a reference to an argument (not the value of the argument) is passed to the parameter. Inside the sub-routine, this reference is used to access the actual argument specified in the call. So, the changes made to the parameter will affect the argument used to call the sub-routine. When you pass an object to a method, it is passed by reference.
When an object reference is passed to a method, the reference itself is passed by value. However, since the value being passed refers to an object, the copy of that value will still refer to the same object that its corresponding argument does.
Objects as parameters:
One of the most common uses of object parameters involve constructors. Frequently you will want to construct a new object which is initially the same as some existing object. To do this you must define a constructor that takes an object of its class as a parameter. You will also require this when you want to initialize an object of a class with an object of another class (possibly of super class).

