3. Garbage Collection

State the behavior that is guaranteed by the garbage collection system, and write code that explicitly makes objects eligible for collection.
Java, they say, scores over other languages like C or C++ in memory management. In Java you need not worry about memory management since its garbage collection mechanism takes care of memory leaks. When an object cannot be referenced in a program or if it cannot be accessed anymore, maybe due to its reference being assigned to another object or its reference being set to null, it becomes eligible for garbage collection. The built in garbage collector mechanism then reclaims the memory which had been allocated to the object.
The storage allocated to an object is not recovered unless it is definitely no longer in use. Even though you may not be using an object any longer, you cannot say when, even if at all, it will be collected. Even methods like System.gc() and Runtime.gc() cannot be relied upon in general, since some other thread might prevent the garbage collection thread from running.
An important consequence of the nature of automatic garbage collection is that there can still be memory leaks. If live, accessible references to unneeded objects are allowed to persist in a program, then those objects cannot be garbage collected. Therefore it is better to explicitly assign null to a variable when it is not needed any more. This is particularly important when implementing a collection.

Object lifetime

The lifetime of an object is from the time it is created to the time it is garbage collected. The finalization mechanism does provide a means for resurrecting an object after it is no longer in use and eligible for garbage collection, but finalization is rarely used for this purpose.

Cleaning up

Objects that are created and accessed by local references in a method are eligible for garbage collection when the method terminates, unless references to those objects are exported out of the method. This can occur if a reference is returned or thrown as an exception.

Object finalization

protected void finalize() throws Throwable;

A finalizer can be overridden in a method in a subclass to take appropriate action before the object is destroyed. A finalizer can catch and throw exceptions like other methods. However, any exception thrown but not caught by a finalizer when invoked by the garbage collector is ignored. The finalizer is only called once on an object, regardless of being interrupted by any exception during its execution. In case of finalization failures the object still remains eligible for garbage collection at the discretion of garbage collector unless it has been resurrected.

Finalizer chaining

Finalizers are not implicitly chained like constructors for subclasses, therefore a finalizer in a subclass should explicitly call super class finalizers as its last action.

A finalize method may make the object accessible again, thus avoiding it being garbage collected. One simple technique is to assign its this reference to a static variable, from which it can later be retrieved. Since a finalizer is called only once on an object, an object can be resurrected only once.

finalize () method:

Sometimes an object will need to perform some action when it is destroyed by the garbage collector. For example, if an object is holding some non java resources such as a file handle or window character font, then you might want to make sure these resources are freed before an object is destroyed. By using finalization, you can define specific actions that will occur when an object is just about to be reclaimed by the garbage collector. To add a finalizer to a class, you simply define a finalize() method. This method has the general form:

 protected void finalize ();

You might find that the storage for an object never gets released because your program never nears the point of running out of storage. If your program completes and the garbage collector never gets around to releasing the storage for any of your objects, that storage will be returned to the operating system en masse as the program exits. This is a good thing, because garbage collection has some overhead, and if you never do it you never incur that expense.

Finalizers are guaranteed to be called before the memory used by an object is reclaimed. However there is no guarantee that any memory will ever be reclaimed. Hence there is no guarantee that finalize() will ever be called. There is a promise that barring catastrophic error conditions, all finalizers will be run on leftover objects when the Java virtual machine exits. However this is likely too late if your program is waiting for a file handle to be released. Besides it is not convincing that it happens anyway. Therefore it is vital that you never rely on a finalizer to free finite resource, such as file handles, that may be needed late by your program.

