2. Flow Control And Exception Handling

Write code using if and switch statements and identify legal argument types for these statements.
The if statement
The legal argument type for if statements is a boolean value i.e. true, false or any expression which evaluates to these values. In Java true and false are not represented by integers like in C or C++.
Only one statement can appear after if or else. If you want to include more statements, you will need to create a block using {}. You can also include the curly braces when using the if, even if there is only one statement in each clause. This makes it easy to add another statement at a later time, and you do not have to worry about forgetting the braces.
Nested if statements
When you nest if statements, the main thing to remember is that an else statement always refers to the nearest if statement that is within the same block as the else and that is not already associated with an else.
The if-else-if ladder
The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else statement will be executed. The final else acts as a default condition; that is, if all other conditional tests fail, then the last else statement is performed. If there is no final else and all other conditions are false, then no action will be taken.
The switch statement
It is Java’s multi-way branch statement. It provides an easy way to dispatch execution to different parts of your code based on the value of an expression. As such, it often provides a better alternative than a large series of if-else-if statements.
The switch expression must be of type byte, short, int, or char; each of the values specified in the case statements must be of a type compatible with or assignable to the expression. Each case value must be a constant, not a variable. Duplicate case values are not allowed. A break statement is used inside the switch to terminate a statement sequence. When a break statement is encountered, execution branches to the first line of code that follows the entire switch statement. This has the effect of jumping out of the switch.
The break statement is optional. If it is omitted, execution will continue on into the next case. It is sometimes desirable to have multiple cases without break statements between them.
Nested switch statements
You can use a switch as part of the statement sequence of an outer switch. Since a switch statement defines its own block, no conflicts arise between the case constants in the  inner switch and those in the outer switch. 
The important features of switch statement:
· The switch differs from the if in that switch can test for equality, whereas if can evaluate any type of boolean expression. 

· No two case constants in the same switch can have identical values. Of course, a switch statement enclosed by an outer switch can have case constants in common. 

· A switch statement is usually more efficient than a set of nested ifs. 

Write code using all forms of loops including labeled and unlabeled use of break and continue, and state the values taken by loop control variables during and after loop execution.
The do-while loop
This loop is especially useful when you process a menu selection, because you will usually want the body of a menu loop to execute at least once.
The for loop variations
The three sections of the for loop can be used for any purpose you desire.
· One of the most common variations involves the conditional expression. Specifically, this expression does not need to test the loop control variable against some target value. In fact, the condition controlling the for loop can be any boolean expression. 

· Either the initialization or the iteration expression or both can be absent. There can be times when this type of approach makes sense. For example, if the initial condition is set through a complex expression elsewhere in the program or if the loop control variable changes in a non-sequential manner determined by actions that occur within the body of the loop, it may be appropriate to leave these parts of the for loop empty. 

· You can intentionally create an infinite loop if you leave all three parts of the for loop empty. Because, then there is no condition under which it will terminate. 

Although there are some programs, such as operating system command processors, that require an infinite loop, most infinite loops are really just loops with special termination requirements.
The break statement
It has three uses:
· It terminates a statement sequence in a switch statement. 

· It can be used to exit a loop. 

By using break, you can force immediate termination of a loop, bypassing the conditional expression and any remaining code in the body of the loop. When a break is encountered inside a loop, the loop is terminated and program control resumes at the next statement following the loop. When used inside a set of nested loops, the break statement will only break out of the innermost loop. Two more points to remember: first, more than one break statements can appear in a loop. But, too many break statements have the tendency to de-structure your code. Second, the break that terminates a switch statement, affects only that switch statement and not any enclosing loops.
· It can be used as a civilized form of goto. 

This statement was not developed to provide the normal means by which a loop is terminated. The loop’s conditional expression serves that purpose. The break statement should be used to cancel a loop only in special cases.
The break statement cannot be used to break out of an if statement.
Using break as a form of goto
Java does not support goto statement, because it provides a way to branch in an arbitrary and unstructured manner. This usually makes goto-ridden code hard to understand and hard to maintain. It also prohibits certain compiler optimizations. There are, however, a few places where goto is a valuable and legitimate construct for flow control. For example, the goto can be useful when you are exiting from a deeply nested set of loops. To handle such situations, Java provides labeled break statement. By using this you can break out of the one or more blocks of code. These blocks need not be part of a switch or a loop. Further, you can specify precisely where execution will resume, because this form of break works with a label. 
When this form of break executes, control is transferred out of the named block of the code. The labeled block of code must enclose the break statement, but it need not be the immediately enclosing block. This means that you can use a labeled break statement to exit from a set of nested blocks. But you cannot use break to transfer control to a block of code that does not enclose a break statement.
A label is any valid Java identifier followed by a colon. Once you have labeled a block, you can then use this label as the target of a break statement. Doing so causes execution to resume at the end of the labeled block.
Keep in mind that you cannot break to any label which is not defined for an enclosing block i.e. if the labeled block/loop does not enclose a break statement, it is not possible to transfer control to that block.
The continue statement:
Sometimes it is useful to force an early iteration of a loop. You might want to continue running the loop, but stop processing the remainder of the code in its body for this particular iteration. In while and do-while loops continue statement causes control to be transferred directly to the conditional statement that controls the loop. In a for loop, control first goes to the iteration portion of the for statement and then to the conditional expression. For all three loops, any intermediate code is bypassed.
As with the break statement, continue may specify a label to describe which enclosing loop to continue.
Good uses to continue are rare. One reason is that Java provides a rich set of loop statements which fit most applications. However, for those special circumstances in which early iteration is needed, the continue statement provides a structured way to accomplish it.
The return statement:
This is explicitly used to return from a method. It causes program control to transfer back to the caller of the method. The return statement immediately terminates the method in which it is executed.
class ReturnTest{
          public static void main (String [] args){
                   boolean t= true;
                   System.out.println (“Before the return.”);
                   if (t) return;
                   System.out.println (“This will not execute.”);
          }
} 
In this program, the if (t) statement is necessary. Without it, the java compiler would flag an “unreachable code” error, because the compiler would know that the last println() statement would never be executed. To prevent this error, the if statement is used here to trick the compiler for the sake of this demonstration.
In addition to these jump statements, Java supports one other way that you can change your program’s flow of execution: through exception handling.
Write code that makes proper use of exceptions and exception handling clauses (try, catch, finally) and declares methods and overriding methods that throw exceptions.


An exception is an abnormal condition that arises in a code-sequence at runtime. A Java exception is an object that describes an exceptional condition that has occurred in a piece of code. When an exceptional condition arises, an object representing that exception is created and thrown in the method that caused the error. That method may choose to handle the exception itself, or pass it on. Either way, at some time, the exception is caught and processed. Exceptions thrown by the java runtime system relate to fundamental errors that violate the rules of Java language or the constraints of the Java execution environment. Manually generated exceptions are typically used to report some error condition to the caller of the method.
Program statements that are monitored for exceptions are contained within a ‘try’ block. An exception thrown from the ‘try’ block is caught, using ‘catch’ block and handled in some rational way. System generated exceptions are automatically thrown by the Java runtime system. To manually throw an exception, use the keyword ‘throw’. Any exception that is thrown out of a method must be specified as such by a ‘throws’ clause. Any code that absolutely must be executed before a method returns is put in a ‘finally’ block.
Exception handling provides a powerful mechanism for controlling complex programs that have many dynamic runtime characteristics. It is important to think of try, catch and throw as clean ways to handle errors and unusual boundary conditions in your program’s logic. Whenever a method can fail, have it throw an exception.
Java’s exception handling statements should not be considered a general mechanism for non-local branching. If you do so, it will only confuse your code and make it hard to maintain.
Types of Exception :
All exception types are subclasses of the class Throwable. Immediately below Throwable are two subclasses that partition exceptions into two distinct branches. One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch. This is also the class that you will subclass to create your own custom exception types. There is an important subclass of Exception, called RuntimeException. Exceptions of this type are automatically defined for the programs that you write, and include things such as division by zero and invalid array indexing.
The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal circumstances by your programs. Exceptions of type Error are used by Java runtime system to indicate errors having to do with the runtime environment itself. Stack overflow is an example of such an error.
Uncaught exceptions:
Whenever an exception object is created and thrown by the runtime system, execution of the program stops, because once an exception has been thrown, it must be caught by an exception handler and dealt with immediately. If you do not supply any exception handlers, the exception is caught by the default handler provided by the Java runtime system.
The default handler displays a string describing the exception, prints a stack-trace from the point at which the exception has occurred, and terminates the program. The stack trace will always show the sequence of method invocations that led up to the error.
Effect on a thread
If an exception is thrown and it is not handled, the execution jumps to the end of the current method. The exception then appears in the caller of that method, and execution jumps to the end of the calling method. This continues until execution reaches  the top of the affected thread, at which point the thread dies.
‘try’ and ‘catch’
The default exception handler in JVM is useful for debugging. It is best to handle the exceptions yourself. Doing so provides two benefits. First, it allows you to fix the error. Second, it prevents the program from automatically terminating.
Once an exception is thrown, the program control transfers out of the ‘try’ block into the ‘catch’ block. Catch block is not called, so execution never returns to the try block from catch. Once the catch statement has executed, program control continues with the next line in the program following the entire try/catch block.
A try and its catch statement form a unit. The scope of catch clause is restricted to those statements specified by the immediately preceding try block. A catch statement cannot catch an exception thrown by another try statement (except in the case of nested try statements). The statements that are protected by ‘try’, must be enclosed within curly braces. That is they must be within a block. You cannot use try on a single statement.
The goal of most well constructed catch blocks should be to resolve the exceptional condition and then continue as if the error had never happened.
Multiple catch clauses:
In some cases, more than one exception could be raised by a single piece of code. To handle this type of situation, you can specify two or more catch blocks, each catching a different type of exception. When an exception is thrown, each catch statement is inspected in order, and the first one whose type matches that of the exception is executed. After one catch statement executes, the others are bypassed, and execution continues after the try/catch block.
When you use multiple catch blocks, it is important to remember that exception subclasses must come before any of their superclasses. This is because a catch statement that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus a subclass would never be reached if it came after its superclass. Further, in Java, unreachable code is an error.
Nested try statements:
Each time a try statement is entered, the context of that exception is pushed on the stack. If an inner try statement does not have a catch handler for a particular exception, the stack is unwound and the next try statement’s catch handlers are inspected for a match. This continues until one of the catch statements succeeds, or until all of the nested try statements are exhausted. If no catch statement matches, then the Java runtime system will handle the exception.
Nesting of try statements can occur in less obvious ways when method calls are involved. You can enclose a call to a method within a try block. Inside that method is another try statement. In this case, the try statement within the method is still nested inside the outer try block, which calls the method.
Displaying a description of an exception
Throwable overrides the toString() so that it returns a string containing a description of the exception. You can display this description in a println() statement by simply passing the exception as an argument.
finally
when exceptions are thrown, execution in a method takes a rather abrupt, non-linear path that alters the normal flow through the method. Depending upon how the method is coded, it is even possible for an exception to cause the method to return prematurely. This could be a problem in some methods. For example, if a method opens a file upon entry and closes it upon exit, you will not want the code that closes the file to be bypassed by the exception-handling mechanism. The ‘finally’ clause creates a block of code that will be executed whether or not an exception is thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the exception. Any time a method is about to return to the caller from inside a try/catch block, via an uncaught exception or an explicit return statement, the ‘finally’ clause is also executed just before the method returns. This can be useful for closing file handles and freeing up any other resources that might have been allocated at the beginning of a method with the intent of disposing them before returning. The ‘finally’ clause is optional. However, each try statement requires at least one catch or a finally clause.
If an exception arises with a matching catch block, then the finally block is executed after the catch block. If no exception arises, the finally block is executed after the try block. If an exception arises for which there is no catch block, then the finally block is executed after the try block.
The circumstances that can prevent execution of finally block are :
· The  death of the thread. 

· The use of System.exit() 

· Interruption of power supply to the CPU. 

· An exception arising in the finally block itself. 

Any exception arising in the finally block can be handled via a try-catch. If no catch is found then control jumps out of the method from the point at which the exception is raised, perhaps leaving the finally block incompletely executed.
Catching multiple exceptions
A catch block handles exceptions of the class specified in its definition, as well as exceptions that are subclasses of the one specified. If you wish to catch multiple exceptions which are related to each other by super class/ sub class relation, then the following points should be kept in mind :
· The catch block specifying super class must come after the catch block which intends to catch the sub class. 

· Out of many catch blocks, you might have defined, only one catch block, which is the first applicable one, will be executed. 

If exceptions are not related by super-sub relation then the order of catch blocks is not important. 
The throw statement
It is possible for a program to throw an exception explicitly using the ‘throw’ statement (e.g. throw object;). The object to be thrown must of type Throwable or a subclass of it. Simple types such as int or char as well as non-Throwable classes, such as String or Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object: using a parameter into a catch clause or creating one with the ‘new’ operator. 
The flow of execution stops immediately after the ‘throw’ statement; any subsequent statements are not executed. The nearest enclosing ‘try’ statement is inspected to see if it has a catch statement that matches the type of the exception. If it does find a match, control is transferred to that statement. If not, the next enclosing try statement is inspected and so on. If no matching catch block is found, then default exception handler halts the program and prints the stack trace.
All of Java’s built in runtime exceptions have two constructors: one with no parameters and one that takes a String parameter. When the second form is used, the argument specifies a string that describes the exception. This string is displayed when the object is used as an argument to print() or println(). It can also be obtained by a call to getMessage(), which is defined by Throwable.
A throw statement should be conditional in some way so that it has a way to complete successfully.
The throws statement
If a method is capable of causing an exception that it does not handle itself, it must specify this behavior so that the callers of the method can guard themselves against that exception. It can be done by including a ‘throws’ clause in the method’s declaration. A throws clause lists the types of exceptions that a method might throw. This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other exceptions that a method can throw must be declared in the ‘throws’ clause. If they are not, a compile time error will result. If  a method declares that it throws more than one exception, class hierarchy of exceptions is important in the declaration - subclass coming before a super class.
Checked exceptions
The checked exceptions are problems that can arise in a correct program. These are concerned with difficulties with the environment such as user mistakes or I/O problems. Since these conditions can arise at anytime, a program must be able to handle and recover from them. The compiler checks whether a program has defined what is to be done when such conditions arise.
Exceptions and Overriding 
A method which overrides a method in a super class can only be declared to throw checked exceptions of classes which were either declared to be thrown by the method in super class or which are subclasses of those exceptions declared in the method of super class.
This restriction is because Java allows use of super class references as references to objects of subclass. If an overriding method were allowed to throw exceptions of super class of those declared for the overridden method, then overriding methods would be able to bypass the enforced checks for checked exceptions.
Java’s built in exceptions:
Inside the standard package java.lang, Java defines several exception classes. The most general of these are subclasses of RuntimeException. Since, java.lang is implicitly imported to all Java programs, most exceptions derived from RuntimeException are automatically available. They need not be included in any method’s throws list. They are called unchecked exceptions because the compiler does not check to see if a method handles, or throws these exceptions. Checked exceptions are those defined by java.lang that must be included in a method’s throws list if that method can generate one of these exceptions and does not handle it itself.
RuntimeException subclasses (unchecked):
· ArithmeticException 

· ArrayIndexOutOfBoundsException 

· ArrayStoreException 

· ClassCastException 

· IllegalArgumentException 

· IllegalMonitorStateException 

· IllegalStateException 

· IllegalThreadStateException 

· IndexOutOfBoundsException 

· NegativeArraySizeException 

· NullPointerException 

· NumberFormatException 

· SecurityException 

· StringIndexOutOfBoundsException 

· UnsupportedOperationException 

Checked Exceptions defined in java.lang:
· ClassNotFoundException 

· CloneNotSupportedException 

· IllegalAccessException 

· InstantiationException 

· InterruptedException 

· NoSuchfieldException 

· NoSuchMethodException 

Creating new Exception subclasses:
Although Java’s built-in exceptions handle most common errors, you may want to create your own exception types to handle situations specific to your applications. To do this, just define a subclass of Exception. Your subclasses do not need to implement anything actually – it is their existence in the type system that allows you to use them as exceptions.
The Exception class does not define any methods of its own. It does inherit those methods provided by Throwable. Thus all exceptions, including those that you create, have the methods defined by Throwable available to them. You may also wish to override one or more of these methods in exception classes that you create.
Methods defined in Throwable:
· Throwable fillInStackTrace () 

· String getLocalizedMessage () 

· String getMessage () 

· void printStackTrace () 

· void printStackTrace (PrintStream stream) 

· void printStackTrace (Printwriter stream) 

· String toString () 

 

