1. Declarations AND Access Control

Section A:

Write code that declares, constructs, and initializes arrays of any base type using any of the permitted forms both for declaration and for initialization.
The declaration of an array provides some information to the compiler such as the type of the data the array will hold and its name. To indicate that a variable of type array is being declared, a pair of brackets is used. For example:
                
            float [] temperature ;
 

This statement does not creates any array, it only creates a name, which can be used to store reference to an array. The arrays are implemented as objects in Java and hence the name of the array does not stores the array, instead it stores a reference to array.
 

If you wish to declare a multi-dimensional array, you use more than one pair of brackets.
 

            float [][] temperature;
 

The size of the array is indicated while creating the array using the new operator.
 

            temperature = new float [6];
 

Here an array is created which would hold six items of type float. This array will be referred to by the name temperature. You can also use any expression that evaluates to an integral type except long at runtime, to denote the size of the array. So, instead of 6, you can write 2*3, or even an expression containing variables whose values will be known only at runtime. The value returned by the dimension expression must be of integral type, or a compile time error occurs. Each expression, undergoes unary numeric promotion. The promoted type must be int, or a compile time error occurs. This means specifically that the type of a dimension expression must not be long .
 

These two statements are generally combined in a single statement:
 

            float [] temperature = new float [6];
 

Once an array is created, its length never changes. To make an array variable refer to an array of different length, a reference to different array (which must be of the same type) must be assigned to the variable. After this array is created, its data can be accessed by index values. The elements of an array are accessed by using non negative integer index value. The first element of an array is referred to as temperature [0], since indexing in Java mostly begins with 0. 
 

Unless all the elements of an array are explicitly initialized, they are initialized automatically with the default values of the element type of the array. In the above example, the default values of all the six items of data will be 0.0, since it is the default value for float.
 

To initialize an array, each of the individual elements is initialized separately.
 

           temperature [0] = 34.6;
           temperature [1] = 35.6; and so on.
Or you can use a loop to initialize the elements of an array.
 

If the values of the elements of an array are known at compile time, an alternative way of declaring and initializing an array can be used.
 

            float [] temperature = {34.6,35.6,36.6,37.5,32.9,30.8};
 

There is no restriction on the order of pair of brackets and the variable name. So, the following code is perfectly valid:
 

            float temperature [] = {34.6,35.6,36.6,37.5,32.9,30.8};
 

The component type of an array may be one of the basic types such as char, byte, short, int, long, float, double or boolean, or it may be a reference type. It may be an array itself.
 

While creating a multidimensional array, dimensions must be created left to right. 
So, int [] [] array = new int [] [4]; is not valid.
Section B:

Declare classes, inner classes, methods, instance variables, static variables, and automatic (method local) variables making appropriate use of all permitted modifiers (such as public, final, static, abstract, and so forth). State the significance of each of these modifiers both singly and in combination, and state the effect of package relationships on declared items qualified by these modifiers.
Access Modifiers
abstract :
 

This applies to classes and methods.
 

A class must be declared abstract if any of the following conditions is true :
· The class has any abstract methods. 

· The class inherits any abstract methods but does not implement them. 

· The class declares that it implements an interface but does not implement all of its methods. 

In a way, abstract is the opposite to final. A final class cannot be sub-classed but an abstract class must be sub-classed. An abstract class can have non-abstract methods.
 

When applied to a method, it means that it has not been implemented in its class. Any other class extending this class must either implement the inherited abstract method or itself be declared abstract.
 

final
 
This applies to classes, methods and variables.
 

A variable can be declared as final. Doing so prevents its contents being changed. This means a final variable must be initialized when it is declared. It is common coding convention to choose all uppercase identifiers for ‘final’ variables. Final variables do not occupy memory on a per-instance basis. Thus, it is essentially a constant. If a final variable is a reference to an object, it is the reference that must stay the same, not the object. It means that the reference cannot be assigned to some other object, but data of the object can be changed.
 

A final class cannot be sub-classed.
 

A final method cannot be overridden.
 
static
 
This can be applied to variables, methods and initializer blocks.
 

When applied to a variable, the variable belongs to the class itself and not to its objects. All the objects of the class share the variable. If you modify the value of a static variable in one object, the value gets changed for all the objects of the class since there is only one variable being shared among all the objects.
 

A static initializer block is executed when the class is loaded. 
 

Methods declared static have several restrictions:
· They can only call other static methods. 

· They must only access static data. 

· They cannot refer to ‘this’ or ‘super’ in anyway. 

· A static method cannot be overridden to be non static. 

 

native
 
It can be applied to methods only.
It indicates that the method body is to be found elsewhere i.e. outside the JVM, in a library. Native code is written in a non java language and compiled for a single target machine type.
 
transient
 
It applies only to variables. A transient variable is not stored as part of its object’s persistent state. Many objects, especially those implementing Serializable or Externalizable interfaces, can have their states serialized and written to some destination outside the JVM. This is done by passing the object to the writeObject() method of the ObjectOutputStream class. If the stream is chained to a file output stream, then the object’s state is written to a file. If the stream is chained to a socket’s output stream then the object’s state is written to the network. In both cases, the object can be reconstituted by reading from an object input stream.
 
There will be times when an object will contain extremely sensitive data. Once an object is written to a  destination outside JVM, none of the Java’s elaborate security mechanisms is in effect. If you declare a variable transient, it’s value will not be written out during serialization.
 
volatile
 
It is applied only to variables. It indicates that such variables might be modified asynchronously, so the compiler takes special precautions. Volatile variables are of interest in multi-processor environments.
 

public
 

A class, method or variable declared public can be accessed by any other code in a program.
 

private
 

This member can only be accessed by other members of its class.
 

default
 

when a member does not have an explicit access specification, it is visible to subclass as well as to other classes in the same package.
 

protected
 

This allows access from everywhere but except for different package non-subclass.
 

Note: You cannot combine some of these modifiers together. Some of the cases are:
· No two access modifiers can be combined. Such as public private, protected public or private protected. 

· abstract and final. 

· Native methods cannot be abstract, or strictfp. 
· An abstract method cannot be static, final, synchronized, native, private, or strictfp. 
Section C:

For a given class, determine if a default constructor will be created, and if so, state the prototype of that constructor.
If there are no constructors defined in a class, Java provides a default constructor. This constructor is a no-args constructor and it simply sets all the fields of the object to their default values. So, all numeric data contained in the fields would be zeroed out, all boolean values would be set to false, and all reference variables set to null.

If there is even a single constructor defined in a class, Java will not create the default constructor. The signature of this default constructor is like this:
public ClassName () { }

where ClassName is the name of the class for which this constructor has been provided.
Section D:

State the legal return types for any method given the declarations of all related methods in this or parent classes.
A method is related to other methods in its own class in case of overloading and with methods in its parent classes in case of overriding. 
In case of overloading, the return type does not matter. So, all the overloaded methods in a class can have different return types.
But in case of overriding, the return type of the overriding method must be same as that of the overridden method in the parent class.
